Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543071

RESUMO

Since the beginning of the XXI century, Leishmaniasis has been integrated into the World Health Organization's list of the 20 neglected tropical diseases, being considered a public health issue in more than 88 countries, especially in the tropics, subtropics, and the Mediterranean area. Statistically, this disease presents a world prevalence of 12 million cases worldwide, with this number being expected to increase shortly due to the 350 million people considered at risk and the 2-2.5 million new cases appearing every year. The lack of an appropriate and effective treatment against this disease has intensified the interest of many research groups to pursue the discovery and development of novel treatments in close collaboration with the WHO, which hopes to eradicate it shortly. This paper intends to highlight the quinoline scaffold's potential for developing novel antileishmanial agents and provide a set of structural guidelines to help the research groups in the medicinal chemistry field perform more direct drug discovery and development programs. Thus, this review paper presents a thorough compilation of the most recent advances in the development of new quinoline-based antileishmanial agents, with a particular focus on structure-activity relationship studies that should be considerably useful for the future of the field.

2.
Toxins (Basel) ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393149

RESUMO

Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.


Assuntos
Mordeduras de Serpentes , Venenos de Víboras , Humanos , Venenos de Víboras/química , Fosfolipases A2/química , Miotoxicidade , Sítios de Ligação
3.
Int J Biol Macromol ; 253(Pt 8): 127572, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866578

RESUMO

Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated by the manganese-sensing transcriptional factor ScaR which controls the expression of proteins involved in manganese homeostasis. To resolve the molecular mechanism through which the binding of Mn2+ ions increases the binding affinity of ScaR to DNA, a variety of computational (QM and MD) and experimental (ITC, DSC, EMSA, EPR, and CD) methods were applied. The computational results showed that Mn2+ binding induces a conformational change in ScaR that primarily affects the position of the DNA binding domains and, consequently, the DNA binding affinity of the protein. In addition, experimental results revealed a 1:4 binding stoichiometry between ScaR dimer and Mn2+ ions, while the computational results showed that the binding of Mn2+ ions in the primary binding sites is sufficient to induce the observed conformational change of ScaR.


Assuntos
Proteínas de Bactérias , Streptococcus gordonii , Humanos , Streptococcus gordonii/genética , Streptococcus gordonii/metabolismo , Proteínas de Bactérias/química , Manganês/metabolismo , Cicatriz/metabolismo , Sítios de Ligação , DNA/metabolismo , Íons , Ligação Proteica
4.
J Chem Inf Model ; 63(20): 6354-6365, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37791530

RESUMO

Due to the emergence of antibiotic resistance, the need to explore novel antibiotics and/or novel strategies to counter antibiotic resistance is of utmost importance. In this work, we explored the molecular and mechanistic details of the degradation of a streptogramin B antibiotic by virginiamycin B (Vgb) lyase of Staphylococcus aureus using classical molecular dynamics simulations and multiscale quantum mechanics/molecular mechanics methods. Our results were in line with available experimental kinetic information. Although we were able to identify a stepwise mechanism, in the wild-type enzyme, the intermediate is short-lived, showing a small barrier to decay to the product state. The impact of point mutations on the reaction was also assessed, showing not only the importance of active site residues to the reaction catalyzed by Vgb lyase but also of near positive and negative residues surrounding the active site. Using molecular dynamics simulations, we also predicted the most likely protonation state of the 3-hydroxypicolinic moiety of the antibiotic and the impact of mutants on antibiotic binding. All this information will expand our understanding of linearization reactions of cyclic antibiotics, which are crucial for the development of novel strategies that aim to tackle antibiotic resistance.


Assuntos
Liases , Virginiamicina , Virginiamicina/química , Virginiamicina/metabolismo , Simulação de Dinâmica Molecular , Liases/metabolismo , Antibacterianos/química , Catálise
5.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298742

RESUMO

(S)-Norcoclaurine is synthesized in vivo through a metabolic pathway that ends with (S)-norcoclaurine synthase (NCS). The former constitutes the scaffold for the biosynthesis of all benzylisoquinoline alkaloids (BIAs), including many drugs such as the opiates morphine and codeine and the semi-synthetic opioids oxycodone, hydrocodone, and hydromorphone. Unfortunately, the only source of complex BIAs is the opium poppy, leaving the drug supply dependent on poppy crops. Therefore, the bioproduction of (S)-norcoclaurine in heterologous hosts, such as bacteria or yeast, is an intense area of research nowadays. The efficiency of (S)-norcoclaurine biosynthesis is strongly dependent on the catalytic efficiency of NCS. Therefore, we identified vital NCS rate-enhancing mutations through the rational transition-state macrodipole stabilization method at the Quantum Mechanics/Molecular Mechanics (QM/MM) level. The results are a step forward for obtaining NCS variants able to biosynthesize (S)-norcoclaurine on a large scale.


Assuntos
Alcaloides , Benzilisoquinolinas , Carbono-Nitrogênio Ligases , Papaver , Alcaloides/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Codeína , Papaver/genética , Papaver/metabolismo
6.
Carbohydr Polym ; 314: 120965, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173007

RESUMO

Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.


Assuntos
Antioxidantes , Polissacarídeos , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Glucanos , Pectinas , Relação Estrutura-Atividade
7.
Int J Biol Macromol ; 238: 124357, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37028634

RESUMO

Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.


Assuntos
Neoplasias , Venenos de Serpentes , Animais , Humanos , Venenos de Serpentes/química , Serpentes/metabolismo , Proteínas/química , Peptídeos/farmacologia , Neoplasias/tratamento farmacológico
8.
J Med Chem ; 66(8): 5364-5376, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37018514

RESUMO

Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.


Assuntos
Venenos de Crotalídeos , Venenos de Serpentes , Humanos , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Água
9.
J Chem Inf Model ; 63(13): 4056-4069, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092784

RESUMO

Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.


Assuntos
Antivenenos , Animais , Antivenenos/farmacologia , Zinco , Venenos de Víboras/química , Venenos de Víboras/toxicidade , Metaloproteases
10.
Chem Sci ; 14(15): 4126-4133, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063789

RESUMO

Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.

11.
Molecules ; 28(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110775

RESUMO

Brewer's spent yeast (BSY) mannoproteins have been reported to possess thickening and emulsifying properties. The commercial interest in yeast mannoproteins might be boosted considering the consolidation of their properties supported by structure/function relationships. This work aimed to attest the use of extracted BSY mannoproteins as a clean label and vegan source of ingredients for the replacement of food additives and protein from animal sources. To achieve this, structure/function relationships were performed by isolating polysaccharides with distinct structural features from BSY, either by using alkaline extraction (mild treatment) or subcritical water extraction (SWE) using microwave technology (hard treatment), and assessment of their emulsifying properties. Alkaline extractions solubilized mostly highly branched mannoproteins (N-linked type; 75%) and glycogen (25%), while SWE solubilized mannoproteins with short mannan chains (O-linked type; 55%) and (1→4)- and (ß1→3)-linked glucans, 33 and 12%, respectively. Extracts with high protein content yielded the most stable emulsions obtained by hand shaking, while the extracts composed of short chain mannans and ß-glucans yielded the best emulsions by using ultraturrax stirring. ß-Glucans and O-linked mannoproteins were found to contribute to emulsion stability by preventing Ostwald ripening. When applied in mayonnaise model emulsions, BSY extracts presented higher stability and yet similar texture properties as the reference emulsifiers. When used in a mayonnaise formulation, the BSY extracts were also able to replace egg yolk and modified starch (E1422) at 1/3 of their concentration. This shows that BSY alkali soluble mannoproteins and subcritical water extracted ß-glucans can be used as replacers of animal protein and additives in sauces.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Animais , Humanos , Saccharomyces cerevisiae/metabolismo , Emulsões/metabolismo , Veganos , Polissacarídeos/química , Mananas/metabolismo , Água/análise , Parede Celular/química , beta-Glucanas/metabolismo , Extratos Vegetais/análise
12.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839991

RESUMO

Leishmaniasis is one of the most neglected diseases in modern times, mainly affecting people from developing countries of the tropics, subtropics and the Mediterranean basin, with approximately 350 million people considered at risk of developing this disease. The incidence of human leishmaniasis has increased over the past decades due to failing prevention and therapeutic measures-there are no vaccines and chemotherapy, which is problematic. Acridine derivatives constitute an interesting group of nitrogen-containing heterocyclic compounds associated with numerous bioactivities, with emphasis to their antileishmanial potential. The present work builds on computational studies focusing on a specific enzyme of the parasite, S-adenosylmethionine decarboxylase (AdoMet DC), with several 1,2,3,4-tetrahydro-acridines emerging as potential inhibitors, evidencing this scaffold as a promising building block for novel antileishmanial pharmaceuticals. Thus, several 1,2,3,4-tetrahydroacridine derivatives have been synthesized, their activity against Leishmania (Leishmania) infantum promastigotes evaluated and a structure-activity relationship (SAR) study was developed based on the results obtained. Even though the majority of the 1,2,3,4-tetrahydroacridines evaluated presented high levels of toxicity, the structural information gathered in this work allowed its application with another scaffold (quinoline), leading to the obtention of N1,N12-bis(7-chloroquinolin-4-yl)dodecane-1,12-diamine (12) as a promising novel antileishmanial agent (IC50 = 0.60 ± 0.11 µM, EC50 = 11.69 ± 3.96 µM and TI = 19.48).

13.
J Phys Chem B ; 127(2): 557-566, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36282235

RESUMO

Graphene oxide (GO), a nanomaterial with promising applications that range from water purification to enzyme immobilization, is actively present in scientific research since its discovery. GO studies with computational methodologies such as molecular dynamics are frequently reported in the literature; however, the models used often rely on approximations, such as randomly placing functional groups and the use of generalized force fields. Therefore, it is important to develop new MD models that provide a more accurate description of GO structures and their interaction with an aqueous solvent and other adsorbate molecules. In this paper, we derived new force field non-bonded parameters from linear-scaling density functional theory calculations of nanoscale GO sheets with more than 10,000 atoms through an atoms-in-molecules (AIM) partitioning scheme. The resulting GAFF2-AIM force field, derived from the bonded terms of GAFF2 parameterization, reproduces the solvent structure reported in ab initio MD simulations better than the force field nowadays widely used in the literature. Additionally, we analyzed the effect of the ionic strength of the medium and of the C/O ratio on the distribution of charges surrounding the GO sheets. Finally, we simulated the adsorption of natural amino acid molecules to a GO sheet and estimated their free energy of binding, which compared very favorably to their respective experimental values, validating the force field presented in this work.


Assuntos
Simulação de Dinâmica Molecular , Água , Adsorção , Água/química , Solventes
14.
J Chem Inf Model ; 63(1): 20-26, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36534708

RESUMO

We describe an approach to identify enzyme mutants with increased turnover using the enzyme DszC as a case study. Our approach is based on recalculating the barriers of alanine mutants through single-point energy calculations at the hybrid QM/MM level in the wild-type reactant and transition state geometries. We analyze the difference in the electron density between the reactant and transition state to identify sites/residues where electrostatic interactions stabilize the transition state over the reactants. We also assess the insertion of a unit probe charge to identify positions in which the introduction of charged residues lowers the barrier.


Assuntos
Catálise
15.
Chemphyschem ; 23(20): e202200269, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35925549

RESUMO

Hydrolysis of lignocellulosic biomass, composed of a lignin-carbohydrate-complex (LCC) matrix, is critical for producing bioethanol from glucose. However, current methods for LCC processing require costly and polluting processes. The fungal Thermothelomyces thermophila glucuronoyl esterase (TtGE) is a promising thermophilic enzyme that hydrolyses LCC ester bonds. This study describes the TtGE catalytic mechanism using QM/MM methods. Two nearly-degenerate rate-determining transition states were found, with barriers of 16 and 17 kcal ⋅ mol-1 , both with a zwitterionic nature that results from a proton interplay from His346 to either the Ser213-hydroxyl or the lignin leaving group and the rehybridisation of the ester moiety of the substrate to an alkoxide. An oxyanion hole, characteristic of esterases, was provided by the conserved Arg214 through its backbone and sidechain. Our work further suggests that a mutation of Glu267 to a non-negative residue will decrease the energetic barrier in ca. -5 kcal ⋅ mol-1 , improving the catalytic rate of TtGE.


Assuntos
Esterases , Lignina , Esterases/química , Lignina/química , Biomassa , Ácido Glucurônico/química , Prótons , Hidrólise , Carboidratos/química , Ésteres/química , Glucose
16.
J Chem Inf Model ; 62(15): 3638-3650, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35880954

RESUMO

We assessed enzyme:substrate conformational dynamics and the rate-limiting glycosylation step of a human pancreatic α-amylase:maltopentose complex. Microsecond molecular dynamics simulations suggested that the distance of the catalytic Asp197 nucleophile to the anomeric carbon of the buried glucoside is responsible for most of the enzyme active site fluctuations and that both Asp197 and Asp300 interact the most with the buried glucoside unit. The buried glucoside binds either in a 4C1 chair or 2SO skew conformations, both of which can change to TS-like conformations characteristic of retaining glucosidases. Starting from four distinct enzyme:substrate complexes, umbrella sampling quantum mechanics/molecular mechanics simulations (converged within less than 1 kcal·mol-1 within a total simulation time of 1.6 ns) indicated that the reaction occurrs with a Gibbs barrier of 13.9 kcal·mol -1, in one asynchronous concerted step encompassing an acid-base reaction with Glu233 followed by a loose SN2-like nucleophilic substitution by the Asp197. The transition state is characterized by a 2H3 half-chair conformation of the buried glucoside that quickly changes to the E3 envelope conformation preceding the attack of the anomeric carbon by the Asp197 nucleophile. Thermodynamic analysis of the reaction supported that a water molecule tightly hydrogen bonded to the glycosidic oxygen of the substrate at the reactant state (∼1.6 Å) forms a short hydrogen bond with Glu233 at the transition state (∼1.7 Å) and lowers the Gibbs barrier in over 5 kcal·mol-1. The resulting Asp197-glycosyl was mostly found in the 4C1 conformation, although the more endergonic B3,O conformation was also observed. Altogether, the combination of short distances for the acid-base reaction with the Glu233 and for the nucleophilic attack by the Asp197 nucleophile and the availability of water within hydrogen bonding distance of the glycosidic oxygen provides a reliable criteria to identify reactive conformations of α-amylase complexes.


Assuntos
Simulação de Dinâmica Molecular , alfa-Amilases , Carbono , Catálise , Domínio Catalítico , Glucosídeos , Humanos , Oxigênio , Teoria Quântica , Água , alfa-Amilases/química
17.
Nat Rev Chem ; 6(7): 451-469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702592

RESUMO

The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.

18.
Chemistry ; 28(42): e202201066, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35686565

RESUMO

The influence of the dynamical flexibility of enzymes on reaction mechanisms is a cornerstone in biological sciences. In this study, we aim to 1) study the convergence of the activation free energy by using the first step of the reaction catalysed by HIV-1 protease as a case study, and 2) provide further evidence for a mechanistic divergence in this enzyme, as two different reaction pathways were seen to contribute to this step. We used quantum mechanics/molecular mechanics molecular dynamics simulations, on four different initial conformations that led to different barriers in a previous study. Despite the sampling, the four activation free energies still spanned a range of 5.0 kcal ⋅ mol-1 . Furthermore, the new simulations did confirm the occurrence of an unusual mechanistic divergence, with two different mechanistic pathways displaying equivalent barriers. An active-site water molecule is proposed to influence the mechanistic pathway.


Assuntos
Protease de HIV , Domínio Catalítico , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
19.
Chemphyschem ; 23(13): e202200159, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499146

RESUMO

We employed QM/MM molecular dynamics (MD) simulations to characterize the rate-limiting step of the glycosylation reaction of pancreatic α-amylase with combined DFT/molecular dynamics methods (PBE/def2-SVP : AMBER). Upon careful choice of four starting active site conformations based on thorough reactivity criteria, Gibbs energy profiles were calculated with umbrella sampling simulations within a statistical convergence of 1-2 kcal ⋅ mol-1 . Nevertheless, Gibbs activation barriers and reaction energies still varied from 11.0 to 16.8 kcal ⋅ mol-1 and -6.3 to +3.8 kcal ⋅ mol-1 depending on the starting conformations, showing that despite significant state-of-the-art QM/MM MD sampling (0.5 ns/profile) the result still depends on the starting structure. The results supported the one step dissociative mechanism of Asp197 glycosylation preceded by an acid-base reaction by the Glu233, which are qualitatively similar to those from multi-PES QM/MM studies, and thus support the use of the latter to determine enzyme reaction mechanisms.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Domínio Catalítico , Termodinâmica
20.
J Chem Educ ; 99(5): 2147-2153, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529516

RESUMO

The COVID-19 pandemic has brought many challenges to human beings, related to not only health and way of life but also teaching because of the interruption of the standard training at universities imposed by lockdowns. Concerning the latter, the academic community had to reinvent itself, in many ways, to carry on with prepandemic education. This article focuses on the use of modern technology and software to create a virtual, highly interactive classroom where a remote but still hands-on course on molecular bioinformatics can be taught, motivating the university students and helping them learn the course contents without significant compromises imposed by successive lockdowns. We implemented such a virtual hands-on molecular bioinformatics course in the second semester of the 2020/2021 academic year. Furthermore, we compared the learning outcomes with those for the earlier editions of the same course in the pre-COVID-19 era, in which the more traditional teaching method was used where all teaching was delivered with physically present lecturers. The virtual classroom proposed here allowed the students to develop skills close to, although slightly below, those obtained with physically present learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...